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Abstract
We report a theoretical investigation into the Kondo transport properties of
circularly coupled triple quantum dots (QDs), composed of one Coulomb-type
QD and two Kondo-type QDs. These two Kondo-type QDs are coupled together
to form an Aharonov–Bohm (AB) ring by two channels: the direct coupling
t0 and the indirect one t via a Coulomb-type QD-M ; these respectively serve
as the continuous and discrete channels for observing the Fano effect. It is
particularly interesting that this QD system may be seen as a powerful platform
for studying the coexistence and interplay of Kondo, Fano and AB effects. First
we study the device conductance in the absence of a magnetic field, and striking
competition between t0 and t is obtained. It is shown that the Kondo-induced
conductance peak pattern without direct coupling is completely changed into a
new pattern characteristic of one deep Fano-induced valley when t0 becomes
sufficiently strong. Furthermore, we show that the position of the bottom of the
Fano valley is determined only by the specific values of the direct and indirect
couplings. Then by applying a magnetic field to this QD ring we explore the
AB oscillations. It is shown that the phase-locking effect still exists even in the
Kondo regime, and the conductance is an even function of the reduced magnetic
flux. The AB oscillation pattern becomes very complex for the QD-M level
|εM | ≈ 0 and strong t, t0 couplings. In addition, the Fano-type valley can be
strongly varied by the magnetic field in the AB ring.

1. Introduction

Since the Kondo effect [1–4] was observed in artificial quantum dot (QD) systems, many
experimental and theoretical studies have been carried out, first in the single QD system and
then extending into the more complex structures with many QDs [5–16]. Obviously, the first
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Figure 1. Schematic illustration for a CCTQD device consisting of two coupled Kondo impurities
(QD-L and QD-R) connected by direct (t0) and indirect (QD-M) coupling, penetrated by a magnetic
flux �.

step in this extension should be the double QD system, which provides us with a flexible tool for
studying the double-impurity Kondo problem [17–20]. Previous investigations of the double-
impurity Kondo problem have been mainly concentrated on directly coupled double QDs,
as well as competition between the Kondo effect and antiferromagnetic coupling. Recently
some groups began research on indirectly coupled QDs [21–26]. One representative kind of
indirectly coupled double QD was proposed in the pioneering work of Craig et al [21], where
they devised a double QD system coupled by an open conducting central region and found
that the appearance of the zero-bias Kondo anomaly in the curve of conductance versus bias
in one QD is closely dependent on the parity of the electron number occupying the other QD.
Motivated by this experiment, two theoretical works by Vavilov et al [22] and Simon et al
[23] were carried out to study this indirectly coupled double QD. Recently, Martins et al [24]
also introduced a simple ‘circuit model’ to qualitatively study indirectly coupled QDs. Another
typical kind of indirectly coupled QD Kondo system are serially coupled triple QDs with two
Kondo-type QDs coupled by one intermediate QD; this has been studied recently in [25, 26].
Note that in all these previously studied QD structures only one kind of coupling (direct or
indirect) exists. To our knowledge, there is little work dealing simultaneously with both direct
and indirect coupling in one QD device.

In this paper, we design one type of circularly coupled triple QDs (CCTQD) in which there
coexist both direct and indirect couplings (see figure 1). Hereafter these three QDs are labelled
as QD-L, -M and -R, respectively. For simplicity, QD-M can be designed large enough to
keep the intradot Coulomb interaction in QD-M negligibly weak. However, QD-L and QD-R,
each connected to one normal metal lead, can be viewed as two Kondo impurities when the
Coulomb interactions in them are strong enough. These two Kondo impurities are coupled to
form a mesoscopic ring through two channels: a direct coupling channel by t0 and an indirect
one by QD-M . In particular, the present CCTQD system has the following characteristics:

(i) Both direct and indirect couplings coexist in CCTQDs, enabling us to study the
competition between these two different couplings.

(ii) Two channels, used to couple two Kondo impurities, serve as the continuous channel and
the discrete one, which opens up a new way to investigate the Kondo-correlated Fano
effect.3

(iii) In this special CCTQD one may simultaneously study the Kondo, Fano and Aharonov–
Bohm (AB) effects, as well as their interplay.

3 As an interesting phenomenon, the Fano effect has been extensively investigated both experimentally and
theoretically. The necessary condition for observing the Fano effect is the existence of a discrete channel and a
continuous one. It is the interference of the electrons through two channels that results in the typical Fano line shape.
Originally, it described the line-shape of an optical absorption spectrum.
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Recently, Kuzmenko et al [27] employed a triangular QD to study the Kondo–AB effect,
demonstrating that the conductance as a function of the magnetic field will show sharp
enhancement or complete suppression depending on the contact setups. Aharony et al [28]
investigated the Fano effect in a closed AB interferometer in the Coulomb regime. Also, Ladrón
de Guevara et al [29] studied the quantum transport of parallel-coupled triple QD molecules
as well as the Fano effect. All of these recent works were carried out in triple QDs, indicating
the level of interest in this kind of structure. In the present paper, we use a CCTQD device to
investigate the quantum transport properties and Fano effect for two QDs in the Kondo regime,
and mainly focus attention on the competition between the direct and indirect coupling between
two Kondo impurities.

Here we theoretically study the Kondo transport properties through the CCTQD both in the
absence and in the presence of a magnetic field. For simplicity we only consider a symmetrical
CCTQD device with the energy level εL = εR ≡ ε0, linewidth function �L = �R ≡ � and
tL = tR ≡ t . First of all we show the variations of the linear conductance G versus the QD-M
energy level εM . It is found that the conductance Kondo peak pattern with t0 = 0 completely
evolves into a novel pattern characteristic of a deep Fano-induced valley for sufficiently strong
t0, which clearly shows the competition between direct and indirect coupling. Interestingly,
the bottom position of the Fano-induced valley is closely related to both the direct and indirect
couplings as εmin

M = t2/t0 in the symmetrical case. Then by applying a magnetic field to the ring
we study the AB oscillation of the conductance. As in the usual two-terminal AB system, the
conductance G in the Kondo regime also has a phase-locking effect and G is an even function
of the reduced magnetic flux φ with a period of 2π [30, 31]. In the case of |εM |/� � 0 or
weak coupling (t, t0 � �), the electron transport is mainly through a first-order tunnelling
process and the curve of G versus φ is nearly sinusoidal. Otherwise, multiple transmission and
reflection processes emerge and the higher order tunnelling processes lead to more complex
patterns of the AB oscillations.

The rest of this paper is organized as follows. In section 2 we give the Hamiltonian of
the CCTQD system and details of the derivation of the Green’s function and the conductance.
Before performing a numerical study, in section 3 we perform an analytical analysis to capture
some fundamental properties of quantum transport according to the transmission coefficient.
Then in section 4 the numerical results are presented. Finally, a brief conclusion is outlined in
section 5.

2. Model and formulation

The entire CCTQD system shown in figure 1, composed of three QDs and two adjacent leads,
may be modelled by the Anderson Hamiltonian

H =
∑

αkσ

εαk ĉ†
αkσ ĉαkσ +

∑

βσ

(εβ d̂†
βσ d̂βσ + Uβ n̂β↑n̂β↓)

+
∑

σ

(tL d̂†
Lσ d̂Mσ + tRd̂†

Rσ d̂Mσ + t0d̂†
Lσ d̂Rσ + H.c.)

+
∑

kσ

(VkL ĉ†
Lkσ d̂Lσ + VkRĉ†

Rkσ d̂Rσ + H.c.), (1)

where ĉ†
αkσ (ĉαkσ ) and d̂†

βσ (d̂βσ ) are the electron creation (annihilation) operators in lead-α

(α ∈ {L, R}) and dot-β (β ∈ {L, M, R}), respectively; n̂βσ ≡ d̂†
βσ d̂βσ indicates the electron

number in QD-β with spin σ . Each QD includes a single energy level εβ and an intradot
Coulomb interaction Uβ . The interdot coupling between QD-L(R) and QD-M is denoted by
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tL (tR), while the coupling between QD-L(R) and the left (right) lead is represented by VkL

(VkR ). In the case of Uα → ∞, the double occupancy in QD-L or QD-R is forbidden, and thus,
by using the auxiliary slave-boson operators [18] together with the constraints, the Hamiltonian
in equation (1) can be rewritten as

Ĥ =
∑

αkσ

εαk ĉ†
αkσ ĉαkσ +

∑

σ

εMd̂†
Mσ d̂Mσ

+
∑

ασ

(tα f̂ †
ασ b̂αd̂Mσ + Vkα ĉ†

αkσ b̂†
α f̂ασ + H.c.)

+
∑

σ

(tL R f̂ †
Lσ b̂L b̂†

R f̂Rσ + H.c.)

+
∑

ασ

[ε̃α f̂ †
ασ f̂ασ + λα(b̂†

αb̂α − 1)], (2)

where ε̃α = εα + λα is the Kondo energy level. Also, the Coulomb interaction in QD-M is
assumed to be zero. In this slave-boson representation, the creation (annihilation) operator d̂†

ασ

(d̂ασ ) in QD-α can be expressed as d̂†
ασ = f̂ †

ασ b̂α (d̂ασ = b̂†
α f̂ασ ) with a boson field operator

b̂α and a pseudofermion field operator f̂ασ . Within such a method, the intradot Coulomb
interaction term is replaced by the constraint

b̂†
α b̂α +

∑

σ

f̂ †
ασ f̂ασ = 1, (3)

which prevents double occupancy in QD-α. This confinement can be implemented by
appending a term λα(b̂†

αb̂α + ∑
σ f̂ †

ασ f̂ασ − 1) to H , where λα is a Lagrange multiplier to
be determined self-consistently. In the following, the slave-boson mean-field approximation
is adopted, and the slave-boson operator b̂α is replaced by a constant number bα which will
be determined self-consistently. Under this approximation, the charge fluctuations around the
average 〈b̂α(t)〉 are ignored. At low temperatures it can describe the Kondo regime correctly
and almost exactly at T = 0 limit [18].

Next we study the quantum transport properties through the CCTQD device based on the
standard Keldysh non-equilibrium Green’s function method [32–35]. The current through the
CCTQD is denoted by

IR = 2e

h̄
Im
∫

dε

2π
�̃R[ fR(Gr

R R − Ga
R R) + G<

R R], (4)

and the linear conductance is

G = 2e

h
Im
∫

dε�̃R
dG<

R R(ε)

dV
, (5)

where the bias V = VL − VR and the right lead bias VR = 0 is assumed to be the energy
zero point. fL/R(ε) = 1/{exp[(ε − VL/R)/KBT ] + 1} is the Fermi distribution function of the
left/right lead, and �̃α ≡ 2π

∑
k Ṽ ∗

kα Ṽkαδ(ε − εαk) ≡ b2
α�α with Ṽkα ≡ Vkαbα. Gr

nm(ε) and
G<

nm(ε) in equations (4) and (5) are the Fourier transforms of the standard retarded and lesser
Green’s functions Gr

nm(t) and G<
nm(t), which are 3 × 3 matrices with indices n, m = L, M, R

for three QDs. For example, the matrix element Gr
nm(t) of the retarded Green’s function Gr (t)

is defined as4

Gr
nm(t) = −iθ(t)〈{ f̂nσ (t), f̂ †

mσ }〉. (6)

All the relevant Green’s functions can be solved by using the Dyson equation Gr = gr +
GrΣr gr and the Keldysh equation G< = GrΣ<Ga . Here gr

ββ(ε) = (ε − ε̃βσ + i0+)−1 is

4 The spin index can be ignored since the spin-up component always equals the spin-down one.
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the exact retarded Green’s function of the isolated QD-β , while all the other non-diagonal
elements of gr are kept at zero. For the lesser self-energy Σ<, there exist only two non-zero
matrix elements denoted by <

L L (ε) = i�̃L fL (ε) and <
R R(ε) = i�̃R fR(ε). On the other hand,

the retarded self-energy Σr can be expressed as

Σr (ε) =
⎛

⎝
−i�̃L/2, t̃L , t̃0

t̃L , 0, t̃R

t̃∗
0 , t̃R, −i�̃R/2

⎞

⎠ , (7)

where t̃α = tαbα and t̃0 = t0bLbR . Finally, based on the motion equation of the slave-boson
operators together with the constraints (equation (3)), [18] the self-consistent equations for the
four undetermined parameters (λα , bα) can be given by

b2
α − i

∑

σ

∫
dε

2π
G<

αα(ε) = 1, (8a)

λαb2
α = i

∑

σ

∫
dε

2π
G<

αα(ε)(ε − ε̃α). (8b)

3. Analytical discussions

Before numerical study, we first analytically examine the current and the conductance
behaviours, as well as the transmission coefficient. Usually, the current flowing through a
two-terminal device can be expressed in the typical form [36] I = (2e/h)

∫
dεT (ε)[ fL − fR],

where T (ε) is the transmission coefficient. This transmission coefficient in the present CCTQD
device can be derived by substituting Gr,a,<

R R into equation (4) as

T (ε) = �̃L �̃R |Gr
RL |2. (9)

Applying the Dyson equation, we can easily derive the retarded Green’s function

Gr
RL (ε) = (ε − εM)t̃∗

0 + t̃L t̃R

(ε − εM)(εLεR − |t̃0|2) − εL t̃2
R − εRt̃2

L − t̃L t̃R t̃ ′ (10)

with εL ≡ (ε − ε̃L + i�̃L/2), εR ≡ (ε − ε̃R + i�̃R/2), and t̃ ′ ≡ 2 Ret̃0. From equations (9)
and (10) the transmission coefficient is obviously given by

T (ε) = �̃L �̃R |(ε − εM)t̃∗
0 + t̃L t̃R|2

|(ε − εM)(εLεR − |t̃0|2) − εL t̃2
R − εRt̃2

L − t̃L t̃R t̃ ′|2 . (11)

In the case of tL = tR = 0, the CCTQD device is simplified to a serially coupled double
QD system, where the transmission coefficient T (ε) in equation (11) becomes

T (ε) = �̃L �̃R |t̃0|2
|εLεR − |t̃0|2|2 , (12)

which is in agreement with the result obtained by Aono and Eto [20]. Furthermore, in the
symmetrical case with εL = εR ≡ ε0 and �L = �R ≡ �, T (ε) can be simplified to

T (ε) = �̃2|t̃0|2
[(ε − ε̃0)2 − (|t̃0|2 − �̃2/4)]2 + �̃2|t̃0|2

. (13)

It is clear that the linear conductance G(ε = 0) = (2e2/h)T (0) shows resonant peaks localized

at ε̃0 = ±
√

|t̃0|2 − �̃2/4.

5



J. Phys.: Condens. Matter 19 (2007) 156213 Z-T Jiang and Q-F Sun

On the other hand, when t0 is selected to be zero, the transmission coefficient in
equation (11) for the symmetrical structure is reduced to

T (ε = 0) = �̃2 t̃4

[εM(ε̃2
0 + �̃2/4) − 2ε̃0 t̃2]2 + �̃2 t̃4

(14)

which is the same as the result corresponding to the serially coupled triple QD system, where
one resonant peak can be found at [26]

εM = 2ε̃0t̃2

(
ε̃2

0 + �̃2

4

)−1

. (15)

Evidently, the transmission coefficients in both the double and triple QD systems have Lorentz-
like characteristic shapes. In fact, the numerator in equation (11) can be decomposed into three
parts: �̃L �̃R|(ε − εM)t̃∗

0 |2, �̃L �̃R |t̃L t̃R|2, and �̃L �̃R(ε − εM)t̃L t̃R t̃ ′. Here the first and second
terms represent electron transport through the QD-M channel and the direct coupling channel,
respectively, while the third denotes the coherent component between the two channels. The
constructive and destructive interferences plus the two Lorentzian shapes form the Fano-type
conductance curves.

Next we put emphasis on the conditions for resonance (T (0) = 1, complete transmission)
and anti-resonance (T (0) = 0, complete reflection), which will help us understand the transport
phenomenon more clearly. From equation (11), we can obtain the condition for anti-resonance
|−εMt̃∗

0 + t̃L t̃R|2 = 0, which can be further simplified to |−εMt∗
0 + tL tR |2 = 0. For real interdot

couplings (tL , tR , and t0) the condition becomes

εmin
M = tL tR/t0, (16)

which can be further simplified as εmin
M = t2/t0 for tL = tR = t . We find that the anti-resonance

position εmin
M , only localized on the εmin

M � 0 side, is directly proportional to the indrect
couplings (tL , tR) and inversely proportional to the direct one (t0). Very surprisingly, the anti-
resonance position is only determined by the bare interdot couplings in such a complex structure
with two Kondo-type QDs, and is not affected by the levels εL and εR , the temperature T , the
Kondo temperature kBTK or the Kondo-induced renormalization of the physical parameters.
However, when the mesoscopic ring is subject to a magnetic field, the interdot coupling
t0 = |t0|eiφ may become a complex number, while tL , tR and εM stay as real numbers. Then the
anti-resonance position can appear (only) at the magnetic flux φ = nπ (n = 0,±1,±2, . . .)
with εmin

M = (−1)ntL tR/|t0|. This indicates that the Fano-induced valley position can be tuned
on either side of εM = 0 for the integer n. Similarly, from equation (11) the condition of the
resonance with T (0) = 1 in a symmetrical CCTQD can also be obtained:

εmax
M = 2t̃2(ε̃0 − t̃0)

ε̃2
0 − t̃2

0 + �̃2/4
. (17)

By comparison with equation (16), we find that the resonance position closely depends on
four renormalized physical parameters ε̃0, t̃ , t̃0 and �̃, in sharp contrast to the anti-resonance
condition. The resonance position is directly proportional to t̃2 and decreases with increasing
t̃0. In the case of t0 = 0, we recover the result of the serial triple QDs in equation (15).
This should be an effective verification of the validity of the general transmission coefficient in
equation (11) and the resonance condition given by equation (17).

4. Numerical results

In this section, we numerically study the quantum transport properties through the CCTQD
device in the Kondo regime. For simplicity, we mainly focus on the symmetrical structure,
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Figure 2. Conductance G versus energy level εM of QD-M for different indirect couplings t and
direct couplings t0.

with �L = �R ≡ � = 1 as the energy unit, the energy level εL = εR ≡ ε0 = −2.3, and
tL = tR = t . Also, we consider a very low temperature KBT = 10−6.

4.1. Without a magnetic field

To begin with, we consider quantum transport through the CCTQD in the absence of a magnetic
field. Figure 2 shows the linear conductance G versus the energy level εM of QD-M for
different t0 and t . When t0 = 0, the CCTQD can be reduced to a serially coupled triple
QD system, which has been studied in a recent work [26]. The meaningful results for the
conductance G can be summarized as (see figure 2(a)):

(1) In the weak coupling case with small t , only one conductance peak is observed at εM � 0.
(2) In the large t case, a double peak pattern appears in the conductance curve.

Then, with increasing t0 from zero, the direct coupling channel is opened and the conductance
G exhibits a very different pattern (see figures 2(b)–(f)):

(1) For the weak coupling t , the single conductance peak pattern is inclined to be destroyed,
and one deep anti-resonance valley is formed.

(2) For the strong coupling t , first the left peak in the double peak pattern and then the right
one is inclined to be submerged, while the deep anti-resonance valley remains.

(3) For a certain t , the deep valley in the conductance curve becomes steeper and its bottom
shifts towards zero with the increase in t0.

(4) For a certain t0, the valleys are widened and their bottoms are pushed away from zero when
t becomes large.

(5) For t �= 0, the asymmetrical double peaks are pushed away from εM = 0 with increasing t ,
while they approach the εM = 0 position from two opposite directions with increasing t0.

How do these phenomena come into being? Clearly, when the direct coupling t0 is zero,
the system is a serially coupled triple QD system. In this case, the electron transport through

7
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the system must pass through the QD-M channel. When the direct coupling t0 becomes non-
zero, another channel of t0 is opened. Obviously, with further increase in t0 more electrons are
directly transported from QD-L to QD-R through the t0 channel, and this channel is dominant
in the limit t0 � t . Therefore in the area |εM | � 0 the conductance is highly enhanced
due to the switching on of the new t0 channel (see figure 2(f)). By observing the solid curves
corresponding to the weak t (=0.1) case, the conductance G shows the visible enhancement
that will submerge the original single conductance peak with the opening of the direct channel
t0. In the meantime, a narrow, deep valley emerges, which results from destructive interference
between the two channels. At certain values of t and t0, an obviously asymmetrical line shape
appears, which can be attributed to the Fano effect (see figures 2(c)–(f)). As we see, for strong t
coupling, the t0-channel-induced enhancement of conductance will first submerge the low (left)
peak and then the high (right) one in the double peak pattern. Nevertheless, the Fano-induced
valley is always observed because of the destructive interference between the two channels. The
evolution from the single or double peak pattern (t0 = 0) to the deep valley pattern (t0 = 0.4)
clearly depicts the competition process between the direct and indirect coupling of the two
Kondo impurities.

In the following we consider the bottom of the Fano valley (the anti-resonance position)
and the conductance peak (the resonance position). As given by equation (16), in the
symmetrical case the anti-resonance position (εmin

M = t2/t0) depends only on t and t0. It is
a universal relation independent of the bare QD energy level εL ,R and other related parameters,
e.g. �L ,R and the temperature. This means that the shape and position of the Fano-induced
conductance valley are mainly determined by both direct and indirect coupling. It is shown in
figure 2 that the bottom position increases with increasing t and decreases with increasing t0,
in agreement with equation (16). This clearly demonstrates the validity of this simple criterion,
which is surprising due to its concise form in so complex a CCTQD system. Physically,
this anti-resonance describes the completely destructive interference between two channels,
while the resonance describes the completely constructive one. Due to the renormalization
of the physical parameters in equation (17), the variation of the resonance position shows a
more complex pattern than that of the anti-resonance. Qualitatively, we can find that the two
conductance peaks with t �= 0 are shifted away from (towards) the position εM = 0 with the
increase in the indirect (direct) coupling, as presented in figure 2.

An important physical parameter in the Kondo effect is the Kondo energy level ε̃ (in the
symmetrical case, ε̃L = ε̃R ≡ ε̃). In figure 3, we show the variations of the Kondo level ε̃

as a function of εM of QD-M for different couplings t and t0. When t0 is chosen to be 0, the
Kondo level ε̃ has one high peak and one gentle valley, and the bottom of the valley can be
lower than zero in the strong t case (see figure 3(a)). Further, we can see that when t is very
weak (e.g. t = 0.1 (solid curves in figure 3)), the Kondo level ε̃ is quite small for all values
of εM and t0, which is different from the case for t0 = 0 where ε̃ is affected by t (figure 3(a)).
For a fixed t , the increase in t0 certainly strengthens the direct coupling channel of the two
Kondo impurities. It will induce a slight increase in the Kondo level, which can be found by
a thorough comparison figure 3(a) with figure 3(f). It also can be found that the gentle valley
with t0 = 0 is suppressed by the opening of the direct coupling channel and it is inclined
to completely disappear when t0 becomes strong, because the opening of the direct coupling
channel can strengthen the co-tunnelling processes and thus enhance the Kondo temperature
kBTK.

Next we carry out more detailed research on the influence of the direct coupling t0.
Figure 4(a) shows the case of t = 0, where the conductance initially increases from 0 to
2e2/h (unitary limit) and then decreases, consequently forming one peak centred at t0 =
(ε2

0 + �2
0/4)1/2 ≈ 0.5, which can be readily obtained from equation (13). Figures 4(b)–(f)
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Figure 3. Kondo energy levels in QD-L or QD-R versus energy level εM of QD-M for different
direct and indirect couplings.

Figure 4. Conductance G versus the direct coupling t0 between QD-L and QD-R for different
indirect couplings t and QD-M energy levels εM .

show the conductances through the CCTQD as a function of t0 for non-zero t and different εM .
In the case of small t (e.g. t = 0.1), the conductances are very similar to that of t = 0, except
for that of εM ≈ 0 (figure 4(d)). However, for large t (e.g. t = 0.5), an apparent difference
appears. In particular, there exists an anti-resonance conductance valley on the side of εM > 0
but not on the side of εM < 0. The bottoms of the valleys are shifted away from zero as t
increases (see figures 4(e) and (f)). This phenomenon can be explained fully according to the
criterion denoted by equation (16), which may be rewritten as tmin

0 = t2/εM .
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Figure 5. Conductance oscillations as a function of the reduced magnetic flux φ at t = 0.1. For
clarity, the conductances are classified into six groups according to the energy levels: (i) |εM | = 0.0,
(ii) 0.1, (iii) 0.2, (iv) 0.3, (v) 0.4 and (vi) 0.5, and then increased by different values 10, 8, 6, 4, 2
and 0, respectively. The conductances corresponding to −|εM | and |εM | are plotted by solid and
dashed lines, respectively.

4.2. With magnetic field

In what follows, we turn to the influences induced by the magnetic field on the transport
properties through the CCTQD ring. Notably, this CCTQD is of peculiar significance because
of the coexistence of three kinds of classical effect—the Kondo, Fano and AB effects—as well
as two kinds of QDs—Kondo-type QDs (QD-L and QD-R) and the usual QD (QD-M). Our
investigations are carried out in both the weak (see figure 5) and the strong (see figure 6) indirect
coupling cases.

In figure 5 we show the conductance G versus the reduced magnetic flux φ with t = 0.1
for different t0 and εM . Three main characteristics can be seen:

(i) As usual, the conductance G in the Kondo regime also oscillates with a period of
2π , and is an even function about φ. The closed CCTQD AB ring is a two-terminal
system and should have a phase-locking effect due to time-reversal symmetry and current
conservation [30, 31].

(ii) G oscillates in phase on either side of |εM | ≈ 0, while the conductances corresponding
to εM � 0 and εM � 0 oscillate in the opposite phase. This means that an abrupt phase
jump π occurs when εM passes through the Fermi energy 0 [31].

(iii) In the area of |εM | � 0 or in the weak t , t0 coupling case, G shows a simple and nearly
sinusoidal oscillation, which means that the first-order tunnelling process dominates.

However, in the case of |εM | ≈ 0 and large t0, the curve G–φ shows a complex pattern. This
is because both the approach of εM → 0 and the increase of t0 will promote the occurrence of
multiple transmission and reflection processes in the CCTQD AB ring.

Then we consider the AB conductance oscillations in the relatively strong t (=0.3) case
(see figure 6). At first glance we may immediately recognize the distinct changes differing
from the weak case in figure 5. The original simple oscillation behaviours with t = 0.1 have
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Figure 6. Conductance oscillations as a function of the reduced magnetic flux φ at t = 0.3. For
clarity, the conductances are classified into six groups according to the energy levels: (i) |εM | = 0.0,
(ii) 0.1, (iii) 0.2, (iv) 0.3, (v) 0.4 and (vi) 0.5, and then increased by different values 10, 8, 6, 4, 2
and 0, respectively. The conductances corresponding to −|εM | and |εM | are plotted by solid and
dashed lines, respectively.

been destroyed and then one more complex pattern appears. Most of the curves plotted in
figure 6 become non-sinusoidal except for those with small coupling (e.g. t0 = 0.1) and a
large QD-M energy level (e.g. εM = ±0.5). This is a result of the multiple transmission and
reflection processes taking place with large probability when t becomes very strong. However,
no matter what changes in the oscillation patterns of the conductances, the period of 2π and
the even parity about φ are still preserved. This is the universal behaviour for the two-terminal
AB system, and it is independent of the specific physical parameters such as εM , t , t0 and so
forth. Notably, the amplitude of the AB oscillation in the strong t case is very large, and can
almost reach the unitary limit 2e2/h. This means that the system can be tuned from resonance
to anti-resonance and vice versa by changing the reduced magnetic flux φ. That is to say, the
Fano valley can be varied by the magnetic field. In the zero magnetic field case, the Fano valley
is always on the right of the peak with εM > 0 (see figure 2). However, by applying a magnetic
field, the Fano valley can be moved to the left of the peak (not presented here).

5. Conclusion

In conclusion, we have studied the Kondo transport properties of a circularly coupled triple QD
device in both the absence and presence of a magnetic field. In this CCTQD system Kondo,
Fano and AB effects coexist, which enables one to simultaneously investigate these three effects
as well as their interplay. First we presented the conductances without the magnetic field
to study the competition between the direct and indirect channels, and thus the Kondo and
Fano effects. It was shown that the conductance peak patterns without direct coupling are
changed into new patterns characteristic of one deep Fano-type valley for sufficiently strong
direct coupling, and the position of the bottom of the Fano valley is only determined by these
two kinds of coupling as εmin

M = t2/t0. Secondly we considered the presence of a magnetic
field to investigate the AB oscillations. It is shown that in the Kondo regime the conductance
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is still an even function of the reduced magnetic flux with period 2π . The amplitude of the AB
oscillation can be quite large in the strong coupling case. Moreover, it is shown that the Fano
valley can be tuned on either side of εM = 0 by the magnetic field.
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[19] López A, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
[20] Aono T and Eto M 2001 Phys. Rev. 63 125327
[21] Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565
[22] Vavilov M G and Glazman L I 2005 Phys. Rev. Lett. 94 086805
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